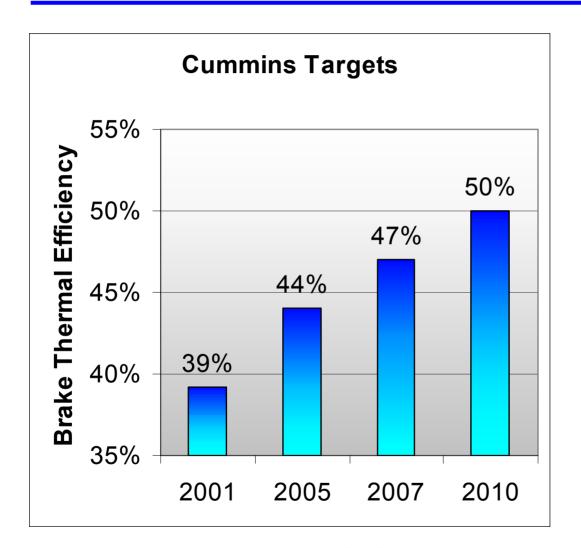


- Project description and goals/objectives
- Project Team/Partnerships
- Task definition and activities by task
- Milestones completed and planned
- Key technical barriers and the strategies to overcome them
- Project risks
- Impact of this project on the goals of the Distributed Energy Program
- Summary


- Project description and goals/objectives
- Project Team/Partnerships
- Task definition and activities by task
- Milestones completed and planned
- Key technical barriers and the strategies to overcome them
- Project risks
- Impact of this project on the goals of the Distributed Energy Program
- Summary

Key ARES Program Goals for 2010:

50% Efficiency at 0.1 g/hp-hr NOx 10% lower operating cost, Increased fuel flexibility

Planned work is split into 3 phases.

Each phase ends with a Field test to demonstrate:

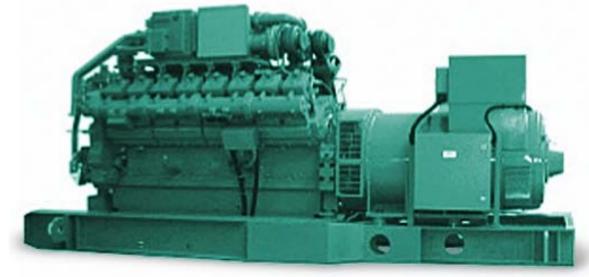
- 1. 44% BTE in 2005
- 2. 47% BTE in 2007
- 3. 50% BTE in 2010



Strategy for achieving ARES goals:

Improve closed cycle efficiency

Explore advanced combustion concepts



Key technologies being explored

- High efficiency turbo charging
- Miller cycle
- Advanced lean burn concepts
- Diesel pilot ignition
- High Pressure Direct Injection (HPDI)
- Stoichiometric combustion with EGR
- HCCI
- Turbo compound
- Bottoming cycle
- High efficiency alternator

DOE Cooperative Agreement DE-FC02-01CH11078

- Project description and goals/objectives
- Project Team/Partnerships
- Task definition and activities by task
- Milestones completed and planned
- Key technical barriers and the strategies to overcome them
- Project risks
- Impact of this project on the goals of the Distributed Energy Program
- Summary

Project Team/Partnerships

- Cummins Westport Inc. HPDI combustion
- Colorado State University Diesel Pilot Ignition
- Delphi Injector development

Ricardo – Injection simulation RICARDO

- Oak Ridge National Lab* -- Ignition system studies
- Lawrence Livermore National Lab* Chemical kinetics
- Lund Institute of Technology* HCCI consortium

OAK RIDGE NATIONAL LABORATORY

* Currently not funded through ARES

- Project description and goals/objectives
- Project Team/Partnerships
- Task definition and activities by task
- Milestones completed and planned
- Key technical barriers and the strategies to overcome them
- Project risks
- Impact of this project on the goals of the Distributed Energy Program
- Summary

Program Phases

	Task 1 Component Development										
Phase 1 44% BTE	Task 2 System Development			- i							
	Task 3 Engine Integration										
	Task 4 Preparation for field test			i							
	Task 5 Field test	<u> </u>		I I		×					
				Ī							
	Task 1 Component Development										
Phase 2 47% BTE	Task 2 System Development			!							
	Task 3 Engine Integration			- ;							
	Task 4 Preparation for field test]		!				✓			
	Task 5 Field test			i				M			
				l I							
	Task 1 Component Development			i							
Phase 3 50% BTE	Task 2 System Development			!							
	Task 3 Engine Integration	1		i							
	Task 4 Preparation for field test										4
	Task 5 Field test	1		i							\sim
		2001	2002	2003	2004	2005	2006	2007	2000	2000	2040

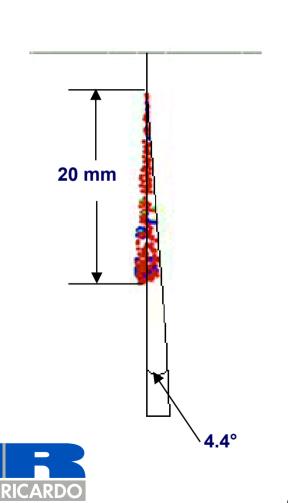
- Project description and goals/objectives
- Project Team/Partnerships
- Task definition and activities by task
- Milestones completed and planned
- Key technical barriers and the strategies to overcome them
- Project risks
- Impact of this project on the goals of the Distributed Energy Program
- Summary

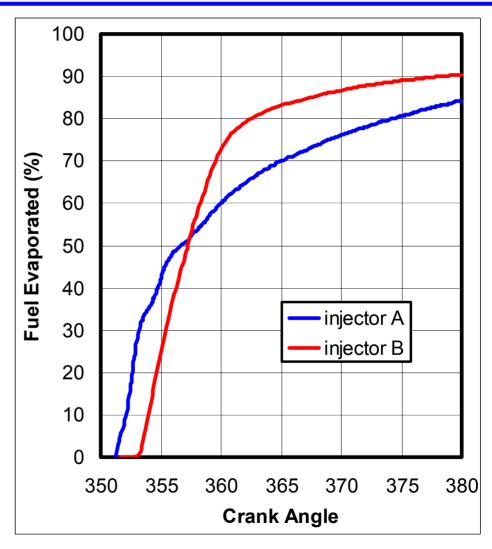
Current Milestones

Advanced	Define pilot ignition design requirements	Completed	
Combustion Systems	Demonstrate diesel pilot ignition limits	Completed	
Gysterns	Prove next generation HPDI system performance	Completed	
	Evaluate fast burn piston design	Completed	
	Define combustion system design guidelines and tradeoffs	Completed	
Air handling	Define limits of turbocharging and system optimization	Completed	
	Define air handling system tradeoffs	Completed	
	Define design concept for reduced FMEP contribution	Completed	
Spark plug life	Demonstrate life limits of conventional spark ignition system	Completed	
	Demonstrate life limits of new spark ignition system	Completed	
Waste heat recovery	Bottoming cycle evaluation	Started	
High efficiency alternator	Define design concept for high efficiency alternator	Planned	

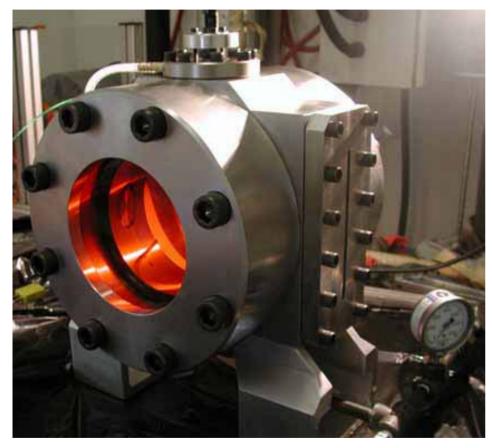
Planned Milestones for 2004

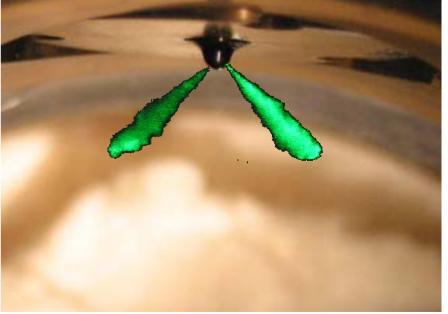
Advanced combustion	Demonstrate performance of field test engine for phase 1			
systems	Evaluate performance of advanced combustion systems for phase 2			
	Improved predictive models			
Advanced	Demonstrate performance of combustion sensors			
Sensors	Demonstrate durability of combustion sensors			
Spark plug life	Demonstrate further improvement in spark plug life			
Waste heat recovery	Evaluate bottoming cycle application			
High efficiency alternator	Evaluate high efficiency alternator			



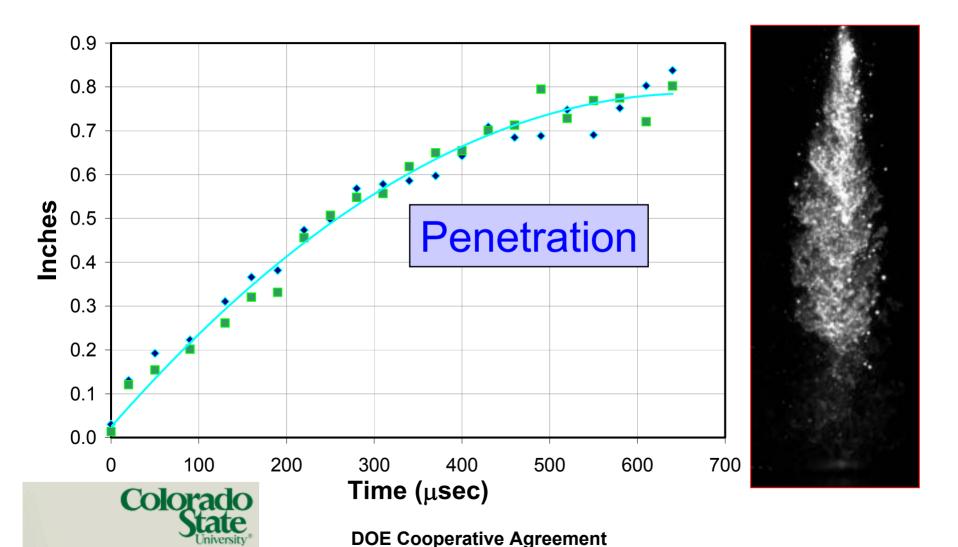

Milestone: Pilot Ignition Design Requirements and Diesel Pilot Ignition Limits

Pilot Ignition Design Requirements (Analysis)



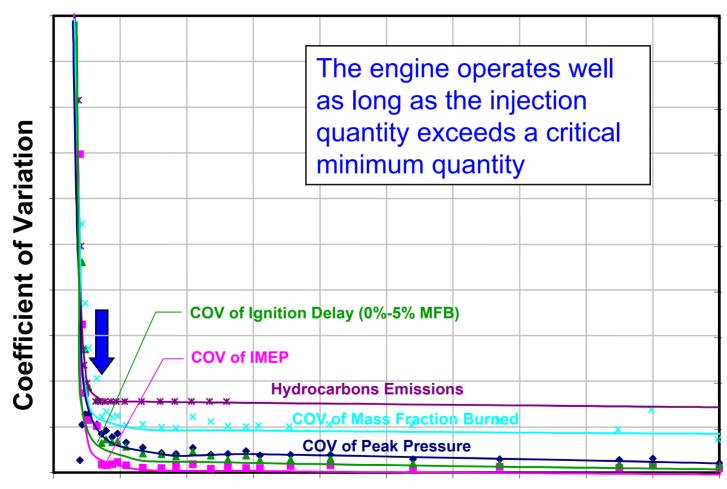


Pilot Ignition Design Requirements (Rig Test)



Knowledge to Go Places

Pilot Ignition Design Requirements (Rig Test)

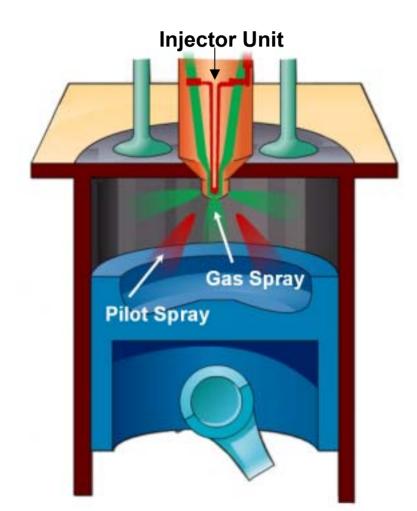


DE-FC02-01CH11078

Diesel pilot ignition limits (Engine Test)

Emissions (PPM)

Fuel quantity per injection event


Milestone: Prove next generation HPDI performance

Next Generation HPDI

- Direct injection of natural gas for high power density
- Diesel pilot is used to initiate combustion
- Improvements over SI
 - Improved power and efficiency at low engine out NOx levels
 - Better transient response
 - Better compensation for CNG composition
- 20% less CO2 than diesel combustion

Prove next generation HPDI performance

Field test unit started operation In Grande Prairie, Alberta in 2003. Test unit in Anaheim, Ca about to go operational.

Demonstration Unit

- Field test unit started 1-year demonstration on Q3 03
- Exporting 1.6 MWe power onto the grid
- ~85% lower NOx emissions than diesel-fuelled equivalent
- ~20% less greenhouse gas emissions than diesel-fuelled equivalent
- Significantly lower PM than 2006 Tier II Standards
- No expensive aftertreatment

Anaheim Utility Demonstration Unit

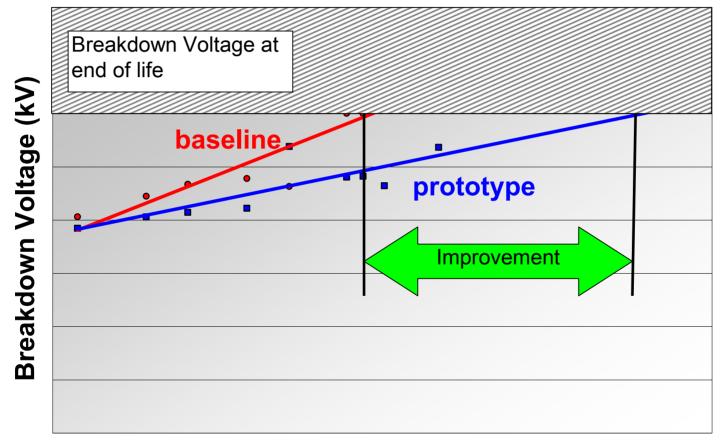
- 1.6MWe grid export demonstration, with SCR, PM Filter and continuous emissions monitoring.
- Permitted at < 0.25 g/bhph NO_{x} (23 ppm) and <0.045 g/bhph PM.
 - Use of aftertreatment will exceed permitting requirements.

Packaged Genset installed on site.

Preliminary switchgear testing & commissioning complete.

Final protective relay programming required prior to grid connect.

Expect unit to start operation early Dec '03.



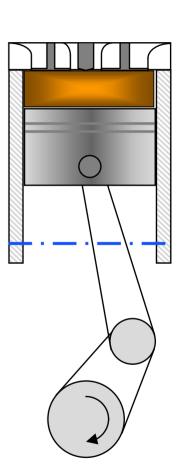
Milestone: Demonstrate Improved Life of Ignition System

Demonstrate Improved Life of Ignition System

Time (hours)

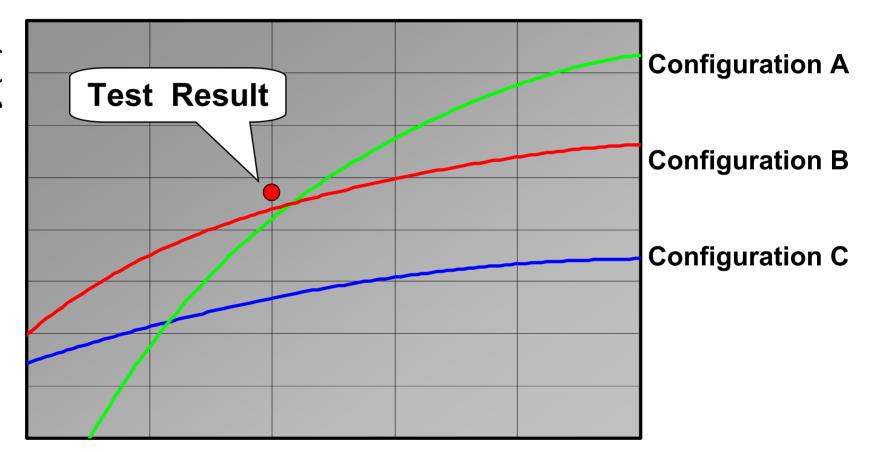
Milestones: Air handling and combustion systems

Air Handling and Combustion System Milestones:

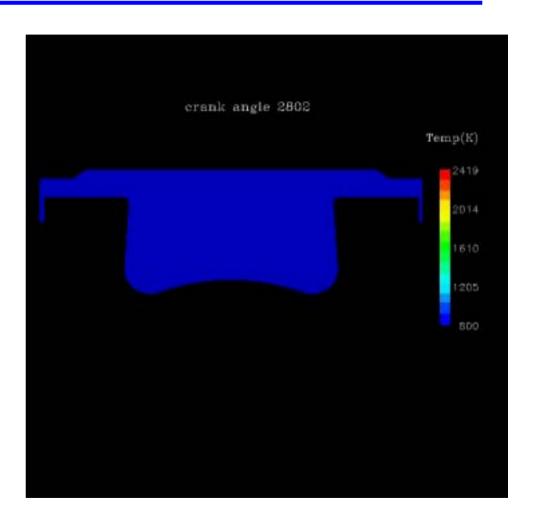

- Define limits of turbocharging and system optimization
- Define air handling tradeoffs
- Evaluate fast burn combustion chamber designs
- Define combustion system guidelines and tradeoffs

Air Handling and Combustion System

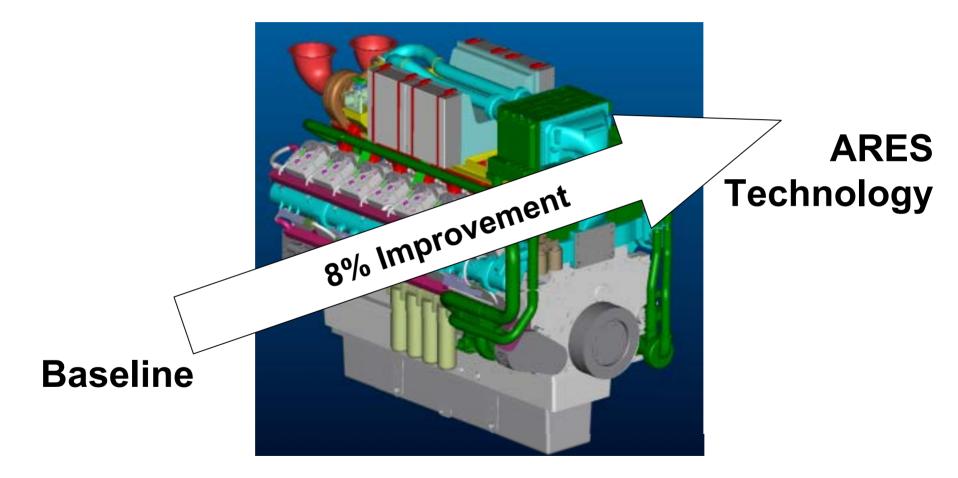
- Improved turbocharger efficiency
 - Demonstrated
- Improved closed cycle efficiency
 - Demonstrated
- Improved fuel consumption
 - -8% better than baseline



Predicted and actual performance match closely


Overall Turbo Efficiency

Modeling – improved CFD models for spark ignition combustion


 Improved submodels used in CFD calculations of spark ignited combustion.

Demonstrated 8% improvement in fuel consumption vs. baseline

- Project description and goals/objectives
- Project Team/Partnerships
- Task definition and activities by task
- Milestones completed and planned
- Key technical barriers and the strategies to overcome them
- Project risks
- Impact of this project on the goals of the Distributed Energy Program
- Summary

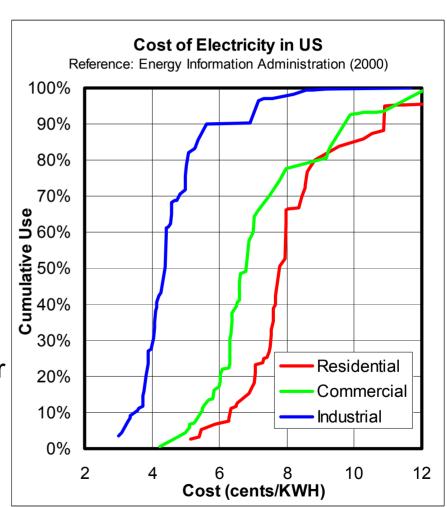
Key technical barriers

- Need to develop higher fidelity predictive tools
- Need to develop more durable and capable combustion quality sensors
- Need to develop advanced controls to optimize advanced combustion systems
- Need to define limits and characteristics of advanced combustion systems
- Higher BMEP levels require more durable spark plugs
- Improved aftertreatment is required to reach low NO_x emissions cost effectively

- Project description and goals/objectives
- Project Team/Partnerships
- Task definition and activities by task
- Milestones completed and planned
- Key technical barriers and the strategies to overcome them
- Project risks
- Impact of this project on the goals of the Distributed Energy Program
- Summary

Project risks

- Some technologies may be technically feasible but not marketable (business case)
- Some technologies unproven and high risk
 - Advanced lean burn concepts
 - Diesel pilot ignition
 - Direct injection of natural gas
 - HCCI
 - Stoichiometric SI with EGR
- Combustion sensor performance and durability
- Spark plug life for high BMEP operation


- Project description and goals/objectives
- Project Team/Partnerships
- Task definition and activities by task
- Milestones completed and planned
- Key technical barriers and the strategies to overcome them
- Project risks
- Impact of this project on the goals of the Distributed Energy Program
- Summary

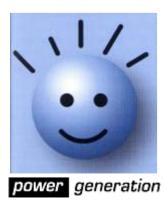
Impact of ARES technologies on Distributed Energy Program

- Lower cost of ownership shortens payback period and broadens the potential market
- Lower emissions improve air quality
- Reduced dependence on foreign oil
- No transmission loss
- Can use natural gas in locations where diesel fuel cannot be stored
- Increased reliability of power grid due to decentralization
- Reduced CO₂ emissions vs. diesel or coal
- Distributed power creates the opportunity for waste heat utilization through CHP

Impact on Distributed Power Generation

The combination of

- high efficiency
- low cost of ownership
- low NO_x emissions


will make it more attractive for customers to purchase natural gas fueled reciprocating engines. This is expected to have a direct positive impact on distributed power generation.

Summary

- ARES technology is being introduced in Cummins Westport Inc. field test units.
- We are on track for a 2005 field test at 44% BTE.
- We demonstrated 8% improvement in fuel economy relative to baseline engine.
- ARES technologies and learnings are currently being integrated into our next generation products.
- ARES is projected to have a direct positive impact on distributed power generation through reduced cost of ownership and lower emissions.

DE-FC02-01CH11078

